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Abstract

In this article a spectral element for anisotropic, laminated composite beams is developed. Firstly, the
axial-bending coupled equations of motion are derived under the assumptions of the First order Shear
Deformation Theory, then the spectral element matrix is formulated. The proposed spectral element is
validated by comparing, with corresponding results from the scientific literature, natural frequencies of a
number of both orthotropic and anisotropic laminated composite beams and the dynamic response of an
anisotropic cantilever beam to high frequency transients. Finally, the application of the proposed element
to the evaluation of the dynamic response to a simulated pyroshock of an idealized satellite structure made
of sandwich beams is shown.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials offer a number of advantages with respect to isotropic ones thanks to their
low density and to the possibility of optimizing their strength and stiffness by properly
determining the fibre orientation of every layer into the laminate. As a result, the analysis of their
static and dynamic behaviour is a very active research area in particular in the aerospace
engineering field, where the minimization of the structural mass is one of the first objectives of the
design.
The necessity to predict high frequency structural vibrations is typical of structure-borne sound

and noise transmission, as well as of problems characterized by exciting forces with very large
bandwidth, such as impacts and pyroshocks. As underlined in Ref. [1], impacts are a very crucial
topic for laminated composite structures, because discontinuous bending stress gradients at the
ply interfaces may cause delamination or debonding of the layers.
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On the other side, due to the highly probable more extensive use of composite materials in
future primary and secondary space structures, pyroshock prediction in composites is a topic that
may become of great importance during the next years. As described in Ref. [2] launch vehicles
and spacecraft make large use of pyrotechnic charges to deploy appendices (e.g., antennas) or
separate subsystems (e.g., disconnect valves). Nevertheless, these charges have the drawback of
giving rise to transients, called pyroshocks, that propagate through primary and secondary
structures and are characterized by very short duration (less than 20 ms), extremely high
accelerations (up to 300 000 g [3]) and very large bandwidth. Usually small components, such as
electronic boards, are very sensitive to these transients, so that their accurate prediction is of great
importance for the success of the mission.
All these problems can be investigated by taking advantage of the concept of wave propagation

in structural media, as demonstrated by Cremer et al. [4] about structure-borne sound
transmission and by Doyle [5] about transient prediction. Nevertheless, it must be stressed
that it is necessary to base the techniques presented in these books on valid mathematical
models of laminated composite structures in the frequency range under analysis to obtain accurate
results.
Static and dynamic behaviour of laminated composite beams has been investigated by a

number of researchers who have developed several theories: from simple ones, e.g., those based on
Euler–Bernoulli assumptions, to those considering transverse normal stress components. A review
of them, strictly related to beams only, is given by Marur and Kant in Refs. [6,7].
Moreover, it can be recalled that equations of motion for beams can be derived from those of

elastic shells under some simplifying assumptions (e.g., in both Refs. [8,9] it is shown that
equations of motion for laminated beams can be derived from those of laminated plates). As a
result, it is possible to refer to developments in the theory of elastic shells to briefly review
corresponding beam theories.
Laminate thin elastic shells have been examined by several investigators. Usually, the

problem of determining the static and dynamic response, as well as the dynamic behaviour,
of laminate and/or homogeneous isotropic shells is addressed by using some simplifying
assumptions proposed initially by Love that led to the development of a sub-class of the theory of
elasticity known as the theory of thin elastic shells. Love’s First Approximation Theory (LFAT)
for thin elastic shells is based upon the following postulates [10]: (1) the shell is thin, (2) the
deflections of the shell are small, (3) the transverse normal stress is negligible, (4) normals to the
middle surface of the shell remain normal to it and undergo no change in length during
deformation. The well-known Classical Lamination Theory (CLT) [11] is based on the previous
four postulates.
As described by Reddy [8,12] several other theories have been developed by delaying the

fourth Love’s postulate. For thick laminates and laminates with high degree of anisotropy,
transverse deformation effects can be significant and theories which hold the fourth postulate
are not able to determine accurately the response to static and dynamic loads. As a consequence,
First order Shear Deformation Theories (FSDT) have been developed, which consider a
constant transverse shear strain over the thickness of the laminate [12]; this is the equivalent of
the Timoshenko theory for isotropic beams. In contrast, Second and Higher order SDT use
higher order polynomials to describe displacement components through the thickness of the
laminate. Finally, some refined theories have been introduced to fulfill shear stress continuity
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and consider the distortion of the deformed normal, e.g., that proposed by Di Sciuva in
Ref. [13].
A number of researchers compared these theories from both the static and the dynamic point of

view; prevailing results are summarized in Refs. [8,9]. Moreover, Marur and Kant [6] compared
higher order refined theories on the transient response of laminated composite beams, showing the
effects of shear deformation and rotatory inertia. In general, all these studies put in evidence the
central role of the thickness to length ratio ðh=LÞ as the criterion to be used for selecting the most
appropriate theory.
Furthermore, it must be stressed that also the frequency range of the excitation influences the

theory to be used. This has been shown by Cremer et al. [4], where they compared Euler–Bernoulli
and Timoshenko theories for isotropic beams. Under the assumption that the former can be used
when it predicts the propagation velocity of a sinusoidal wave with an error lower than 10%, they
demonstrated that the Euler–Bernoulli theory provides accurate results when the wavelength, l; is
greater than six times the thickness, h; of the beam under analysis. As a result, shear deformation
and rotatory inertia effects must be taken into account in a proper way at high frequencies, where
the l=h > 6 condition is not respected.
Spectral elements have been proposed by Doyle [5] to study the wave propagation in structures.

Their main feature is the use of exact shape functions, permitting one to describe exactly the mass
distribution within a structural element; as a result, the spectral element matrix is equal to the so-
called dynamic stiffness matrix [14] relating generalized forces to displacements at the nodes of the
element under consideration. Nevertheless, it must be stressed that the spectral element matrix
and the dynamic stiffness are derived by using different approaches. Indeed the former is derived
by assuming wave motion into the structural element, requiring the solution of the corresponding
dispersion relation. In contrast, the dynamic stiffness matrix is based on the assumption of
harmonic motion so that the resulting differential problem depends on space variables only (see
e.g., Eisenberger et al. [15] and Abramovich et al. [16] where the displacements field is defined as
an infinite and convergent recurring series, and Ref. [17] where Leung and Zhou used the
Kantorovich method).
The direct consequence of the use of exact shape functions is the ability of the Spectral Element

Method (SEM) to deal with high frequency problems, where associated wavelengths become very
small. This property makes SEM very attractive from the computational point of view, in
particular for those problems in which the exciting force has a very large bandwidth. In contrast,
the Finite Element Method (FEM) requires a huge number of elements to match the smallest
characteristic wavelength of the problem.
At the moment, spectral element formulations are available only for few structural elements. By

focusing the attention on beam structures, in Ref. [5] a Timoshenko beam for isotropic material is
presented, in Ref. [18] dynamic properties of piezoelectric actuated beams are analyzed, while
Mahapatra et al. proposed in Ref. [1] a spectral element for Euler–Bernoulli (i.e., based on CLT
assumptions) composite beams.
As a result, the aim of this article is to extend the library of spectral elements currently available

by determining the spectral element matrix for an anisotropic, composite laminated beam based
on the First Shear Deformation Theory (i.e., the equivalent of the Timoshenko theory for
composite laminates), making SEM applicable to deal with relatively thick composite and
sandwich structures.
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2. Formulation of the spectral element

2.1. Equations of motion and boundary conditions

An anisotropic, laminated composite beam with width b; thickness h and length L is considered.
It is assumed that each layer of the laminated beam behaves macroscopically as a homogeneous,
orthotropic, linearly elastic material and all layers are assumed to be perfectly bonded together.
Moreover, the co-ordinates are oriented so that x is directed along the beam axis and z along its
thickness. Under the assumptions of the FSDT [12] in-plane, uðx; zÞ; and out-of-plane, wðx; zÞ;
displacements of the beam are given by

uðx; zÞ ¼ u0ðxÞ þ zfðxÞ;

wðx; zÞ ¼ wðxÞ; ð1Þ

where u0ðxÞ is the mid-plane axial displacement, fðxÞ is the rotation of the cross-section and the
second equation states that there is no contraction along the out-of-plane direction.
By applying the well-known rules leading to deformations, it follows:

ex ¼ e0 þ zkx ¼ u0;x þ zf;x;

gxz ¼ w;x þ f; ð2Þ

where ð�Þ;x ¼ @ð�Þ=@x:
Deformations are related to traction, N; bending moment, M; and shear, Q; according to

N

M

( )
¼

A11 B11

B11 D11

" #
e0
kx

( )
;

Q ¼ KA55gxz ; ð3Þ

where K is the shear correction factor and rigidities A11; B11 and D11 are derived according to
Reddy [8], i.e., considering the Poisson effect by starting from corresponding quantities
determined for plates and recalling that Nyy ¼ Nxy ¼ Myy ¼ Mxy ¼ 0:
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Fig. 1. The spectral element under consideration: generalized displacements (upper) and forces (lower).
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By considering both effects of inertia load and of generalized forces F1; y; F6 shown in Fig. 1,
the virtual work principle givesZ L

0

ðNde0 þ Mdkx þ QdgxzÞ dx þ b

Z L

0

Z h=2

�h=2
rðzÞð .uðx; zÞduðx; zÞ þ .wðx; zÞdwðx; zÞÞ dx dzþ

� F1du0ð0Þ � F4du0ðLÞ � F2dfð0Þ � F5dfðLÞ � F3dwð0Þ � F6dwðLÞ ¼ 0: ð4Þ

By introducing

In ¼ b

Z h=2

�h=2
rðzÞzn dz ð5Þ

recalling Eq. (1), integrating Eq. (4) by parts, the equations of motion are derived:

� N;x þ I0 .u0 þ I1 .f� I1 .w;x ¼ 0;

� M;x þ Q þ I1 .u0 þ I2 .f� I2 .w;x ¼ 0;

� Q;x þ I0 .w ¼ 0 ð6Þ

associated with the following natural boundary conditions:

F1

F2

F3

8><
>:

9>=
>; ¼ �

Nð0Þ

Mð0Þ

Qð0Þ

8><
>:

9>=
>;;

F4

F5

F6

8><
>:

9>=
>; ¼

NðLÞ

MðLÞ

QðLÞ

8><
>:

9>=
>;: ð7Þ

2.2. Governing wave equations

Under the assumption of wave propagation into laminated beams, generalized co-ordinates can
be written as

u0ðx; tÞ

fðx; tÞ

wðx; tÞ

8><
>:

9>=
>; ¼

U

P

W

8><
>:

9>=
>;eikxeiot; ð8Þ

where k is the wavenumber and o is the circular frequency. By introducing the previous relation
into the equations of motion (6), and taking advantage of relation (3), it is possible to determine
for each circular frequency o the wavenumber, kn; and the corresponding shape (in terms of
coefficients Un; Pn and Wn) of waves propagating into the beam at that frequency. The
consequent system of equations is the following:

ðA11k
2 � I0o2Þ ðB11k

2 � I1o2Þ 0

ðB11k
2 � I1o2Þ ðD11k

2 þ KA55 � I2o2Þ iKA55k

0 �iKA55k ðKA55k
2 � I0o2Þ

2
64

3
75

U

P

W

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;: ð9Þ

By setting a circular frequency o; the previous system of equations is satisfied by values
of k that are eigenvalues of the coefficient matrix. Since powers up to 2 of k are present in
the coefficient matrix, to simplify the evaluation of eigenvalues, the previous equation is
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rewritten as

X2
m¼0

½Mm�km

 ! U

P

W

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>; ð10Þ

with

½M0� ¼

�I0o2 �I1o2 0

�I1o2 KA55 � I2o2 0

0 0 �I0o2

2
64

3
75;

½M1� ¼

0 0 0

0 0 iKA55

0 �iKA55 0

2
64

3
75;

½M2� ¼

A11 B11 0

B11 D11 0

0 0 KA55

2
64

3
75:

Eq. (10) can be solved by taking advantage of the companion matrix concept, i.e., rewriting
Eq. (10) as

½a�f #Gng � kn½b�f #Gng ¼ f0g ð11Þ

with

½a� ¼
½0� ½I�

½M0� ½M1�

" #
;

½b� ¼
½I� ½0�

½0� �½M2�

" #
;

f #Gng
T ¼ Ik0

nfGng
T k1

nfGng
TmT fGng

T ¼ IUn Pn Wnm
T

in which ½0� is the ð3� 3Þ null matrix and ½I� is the ð3� 3Þ identity matrix.
As a result, six wavenumbers kn; for a given circular frequency, are evaluated as eigenvalues of

the matrix ½b��1½a�; that is non-singular because matrix ½M2� cannot be singular. Corresponding
eigenvectors, i.e., shapes of propagating waves fGng

T ¼ IUn Pn Wnm
T; are given by the first

three elements of f #Gng:
It follows that at the selected circular frequency, o; displacements can be written as a

superposition of six waves:

u0ðx; tÞ

fðx; tÞ

wðx; tÞ

8><
>:

9>=
>; ¼

X6
n¼1

an

Un

Pn

Wn

8><
>:

9>=
>;eiknxeiot ð12Þ
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that can be reorganized as

u0ðx; tÞ

fðx; tÞ

wðx; tÞ

8><
>:

9>=
>; ¼ ½U�½kðxÞ�fageiot; ð13Þ

where fagT ¼ Ia1ya6m
T and

½U� ¼ ½fG1g y fG6g�;

½kðxÞ� ¼

eik1x

&

eik6x

2
64

3
75:

2.3. Spectral element shape functions

The spectral element of the anisotropic laminated composite beam under consideration is
characterized by the generalized degrees of freedom (d.o.f.s) represented in Fig. 1, i.e., axial
displacement, cross-section rotation and vertical displacement at both ends.
In order to derive the shape functions of this element, the approach described by Doyle [5] is

used. Accordingly, by evaluating the displacements given by Eq. (13) at x ¼ 0 and L it is possible
to determine the relation between constants fag and the generalized d.o.f.s at the left and right end
of the beam respectively:

u1

f1

w1

8><
>:

9>=
>; ¼ ½U�fag ð14Þ

and

u2

f2

w2

8><
>:

9>=
>; ¼ ½fG1geik1L

y fG6geik6L�fag ¼ ½ #U�fag: ð15Þ

These last two equations can be rewritten as

fVg ¼
½U�

½ #U�

" #
fag ¼ ½F��1fag;

where vector fVg collects the six generalized d.o.f.s. As a result, the displacements can be written
as

u0ðx; tÞ

fðx; tÞ

wðx; tÞ

8><
>:

9>=
>; ¼ ½U�½kðxÞ�½F�fVgeiot; ð16Þ

where ½U�½kðxÞ�½F� gives the shape functions of the spectral element.
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2.4. Spectral element matrix

As shown by Doyle [5], the spectral element matrix can be derived by firstly evaluating
generalized displacement derivatives, then the stress resultants N; M and Q according to Eq. (3)
and finally external forces by using relation (7).
In order to determine generalized displacements derivative, the following matrix must be

introduced:

½k0ðxÞ� ¼

ik1e
ik1x

&

ik6e
ik6x

2
64

3
75

so that

u0;xðxÞ

f;xðxÞ

w;xðxÞ

8><
>:

9>=
>; ¼ ½U�½k0ðxÞ�½F�fVg: ð17Þ

As a result, the stress resultants are given by

NðxÞ

MðxÞ

QðxÞ

8><
>:

9>=
>; ¼

A11 B11 0

B11 D11 0

0 0 KA55

2
64

3
75

u0;x

f;x

w;x þ f

8><
>:

9>=
>;

¼

A11 B11 0

B11 D11 0

0 0 KA55

2
64

3
75ð½I�½U�½k0ðxÞ� þ ½If�½U�½kðxÞ�Þ½F�fVg

¼ ½R�½SðxÞ�½F�fVg; ð18Þ

where

½If� ¼

0 0 0

0 0 0

0 1 0

2
64

3
75:

By recalling Eq. (7) and using Eq. (18), external forces and d.o.f.s are related by

F1

F2

F3

8><
>:

9>=
>; ¼ �½R�½Sð0Þ�½F�fVg ð19Þ

and

F4

F5

F6

8><
>:

9>=
>; ¼ ½R�½SðLÞ�½F�fVg ð20Þ
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so that the dynamic stiffness matrix of the spectral element is given by

½Kd � ¼ ½R�
�½Sð0Þ�

½SðLÞ�

" #
½F�: ð21Þ

3. Numerical results

3.1. Numerical validation: natural frequencies

In order to validate the spectral element proposed in the previous section, a number of
comparisons with published corresponding results are shown. All layers of each of the following
beams have the same thickness, moreover it is assumed that every orthotropic lamina has the
following material properties: E1 ¼ 144:8 GPa; E2 ¼ 9:65 GPa; G12 ¼ G13 ¼ 4:14 GPa; G23 ¼
3:45 GPa; n12 ¼ 0:3; r ¼ 1389:23 kg=m3: Furthermore, results presented in this section are
obtained neglecting the Poisson effect, i.e., assuming the structure in cylindrical bending [19], and
using a shear correction factor K ¼ 5=6; as well as in Refs. [15,20–22].
The first comparison is related to a simply supported beam with all layers oriented at 0
; length

L ¼ 381 mm; L=h ¼ 15: Table 1 shows corresponding first three natural frequencies (in kHz) for
the out-of-plane motion of the beam and the comparison of these results with values from
literature [15,20] is extremely good.
The second comparison is related to beams with different boundary conditions, simply

supported and clamped-free, symmetrically laminated ð0
=90
=90
=0
Þ with L=h ¼ 15: Table 2
lists non-dimensional natural frequencies of the beams obtained by using the proposed
spectral element. A good agreement can be observed with corresponding reference values given
in Ref. [15].
The third example is related to non-symmetric beams with two layers ð0
=90
Þ: Results for the

first four non-dimensional natural frequencies are shown in Table 3. In this case, all the axial
displacements have been constrained, so that the effect of axial-bending coupling is stronger [15].
The comparison with corresponding results from Refs. [15,21] shows a good agreement.
The last example is related to multi-span beams with different numbers of spans, both

symmetric and non-symmetric lay-ups and different outer boundary conditions (even if in both
cases the outer axial displacements are constrained). The corresponding first natural frequencies,
expressed in kHz, are listed in Table 4 and compared to results published in Ref. [22]. For this
example the comparison is extremely good.
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Table 1

Out-of-plane bending natural frequencies (in kHz) for a simply supported beam ð0
; L=h ¼ 15; L ¼ 381 mmÞ

Mode Present [15] [20]

1 0.7551 0.755106 0.755

2 2.5479 2.547846 2.548

3 4.7160 4.715963 4.716
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Table 2

Out-of-plane bending non-dimensional natural frequencies ðoL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E1h2

p
Þ for symmetrically laminated

ð0
=90
=90
=0
Þ beams ðL=h ¼ 15; CF ¼ clamped-free; SS ¼ simply-supportedÞ

Mode 1 Mode 2 Mode 3

Present [15] Present [15] Present [15]

CF 0.9240 0.9241 4.8891 4.8925 11.4351 11.4401

SS 2.5002 2.5023 8.4764 8.4813 15.7513 15.7559

Table 3

Non-dimensional natural frequencies ðoL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0=D11

p
Þ of ð0
=90
Þ beams with different boundary conditions ðL=h ¼ 10Þ

Mode Present [15] [22]

SS 1 8.146 8.13392 8.1439

2 21.669 21.60865 21.661

3 43.823 43.64532 43.788

4 63.842 63.56258 63.787

CF 1 2.243 2.23948 2.2427

2 12.499 12.46528 12.494

3 30.478 30.36466 30.458

4 50.803 50.61310 50.765

Table 4

First natural frequency (in kHz) for multi-span beams (with overall length L ¼ 30 in) with different number of spans

for symmetric and non-symmetric lay-up and different outer boundary conditions

Spans Simply-supported Clamped–clamped

Present [22] Present [22]

0
=90
=90
=0


1 0.1873 0.187 0.3972 0.397

2 0.7114 0.711 1.0023 1.002

3 1.4836 1.484 1.7108 1.711

4 2.4113 2.411 2.5640 2.564

5 3.4245 3.424 3.5210 3.521

90
=0


1 0.1311 0.131 0.2141 0.214

2 0.3782 0.378 0.5735 0.574

3 0.8688 0.869 1.0267 1.027

4 1.4198 1.420 1.6060 1.606

5 2.1756 2.176 2.2988 2.299
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3.2. Numerical validation: high frequency transients

In order to validate the proposed spectral element, it has been used to evaluate the velocity at
the free end of a cantilever beam under the action of an external load. This example has been
already analyzed in Refs. [1,23], where results obtained by taking advantage of the FEM and of a
spectral element for composite Euler–Bernoulli beams are discussed.
The cantilever beam has the following properties: length L ¼ 1 m; width b ¼ 0:01 m; height

h ¼ 0:01 m; it is made of AS/3501-6 graphite-epoxy having properties E1 ¼ 144:48 GPa;E2 ¼
9:632 GPa; G12 ¼ G31 ¼ 4:128 GPa; G23 ¼ 3:45 GPa; n12 ¼ 0:3; r ¼ 1389 kg=m3: Moreover,
the ply-stacking sequence used is ð0
5=90



5 Þ to amplify the coupling between axial and bending

motion. The tip load has time history and frequency spectrum shown in Fig. 2. By analyzing the
corresponding figures of Refs. [1,23], and in order to obtain the same load used in these two
articles, a sin2 shape has been chosen for the tip load time history, with a peak force of 4.4N and a
duration of 35 ms: This last value is different from that declared in Refs. [1,23], even though it has
been chosen in order to have a frequency bandwidth of the forcing load of 44 kHz; as specified in
Ref. [23]. Moreover, it must be recalled that the load shown in Fig. 2 is used to simulate an
impact, so that it must give initial negative velocity at the application point. Finally, it must be
stressed that, due to the very wide frequency content of this load, SEM is more efficient in the
evaluation of the dynamic response than FEM that, in this case, requires 1000 finite elements to
provide accurate results [1,23].
Fig. 3 shows the mid-plane velocity of the beam at the free end (i.e., ’u0ðLÞ). The first peak is due

to the application of the load, while the second peak is due to the wave reflected by the clamped
end. The comparison of this figure with Fig. 4(a) of Ref. [1] and Fig. 2 of Ref. [23] shows a very
good agreement between these results.
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Fig. 2. Time history and amplitude of the Fourier transform of the tip load acting on a cantilever beam.
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In Fig. 4 the out-of-plane velocity of the beam free end is shown (i.e., ’wðLÞ) when the load is
applied in the vertical direction. This result shows the dispersive nature of flexural waves and it is
in good agreement with those shown in Refs. [1,23]. In particular, it is interesting to observe that
the first reflection of waves appears at about 1200 ms; as already underlined by Chakraborty et al.
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Fig. 3. Cantilever beam axial velocity due to axial tip load.
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Fig. 4. Cantilever beam transverse velocity due to transverse tip load.
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[23] in the comment of their RFSDT finite element model, while the reflection predicted by the
CLT model appears at about 700 ms (see Fig. 4(b) of Ref. [1] and Fig. 3 of Ref. [23]).
Discrepancies between results obtained by using CLT and FSDT are clarified by looking at the

dispersion relation, shown in Fig. 5, for the beam under analysis. This figure illustrates the
relation between the adimensional wavenumber (defined as kh) and frequency; continuous and
dash-dot lines are related to FSDT and CLT respectively. Moreover, the two upper and middle
curves are related to bending and axial waves respectively. Finally, it is possible to see that after
90 kHz a propagating shear mode appears.
It has been stated that the excitation bandwidth is of 44 kHz: By looking at Fig. 5 it is shown

that up to 44 kHz the CLT model describes the propagation of axial waves with a sufficient
accuracy, while there are large errors in the wavenumber prediction for bending waves. It follows
that a FSDT approach is not necessary to determine accurately the dynamic response of the beam
at the exciting horizontal force, while it is needed to evaluate the response to transverse excitation,
as demonstrated by Figs. 3 and 4.

4. Application to pyroshock analysis

The aim of this section is to demonstrate that SEM can be very useful to predict vibrations
induced by pyrotechnic charges commonly used in the space engineering. As a result, even though
the comparison between dynamic properties of structures can be performed directly by comparing
corresponding spectral matrices, in this article it is preferred to compare shock response spectra
because this is the information required by technicians involved in pyroshock analysis.
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Fig. 5. Dispersion relation for the cantilever beam (—, FSDT; — � —, CLT).
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As already introduced in Section 1, pyroshocks are high frequency transients due to pyrotechnic
devices used in aerospace engineering in order to deploy solar arrays and antennae, separate
subsystems from the spacecraft or separate the spacecraft itself from the base stage booster.
The intensity of pyroshocks may be critical for some equipment. Indeed pyroshock induced

vibrations have been identified as one of the major causes of in-flight satellite failures [24].
Currently, aerospace companies predict the vibration level due to pyrotechnic charges by using
simple semi-empirical methods, as the one described in Ref. [25], because even though some
theoretical investigations have been performed [2], a prediction methodology has not yet been
established. Finally, it must be underlined that, probably, during the next years this topic will gain
more attention in the scientific community, because recent launch vehicles, e.g., Ariane 5, give rise
to very intense pyroshocks.
By taking advantage of the efficiency of SEM to deal with high frequency transients, in this

section a two-dimensional idealized satellite structure, made of sandwich beams, is analyzed to
determine its shock response spectrum (SRS)1 to an excitation typical of a pyrotechnic charge
called ‘separation nut’.
The structure under analysis is shown in Fig. 6 (where dimensions are expressed in m) and it is

assumed that equipment, to be connected to nodes 4, 7 and 10, will be sensitive to out-of-plane
vibrations of the supporting beam. The whole structure is made of sandwich panels with
composite faces and aluminium honeycomb core with properties: E1 ¼ 120 GPa; E2 ¼ E3 ¼
7:9 GPa; G12 ¼ G23 ¼ G31 ¼ 5:5 GPa; n ¼ 0:3; r ¼ 1580 kg=m3 and G13 ¼ 140:7 MPa; G23 ¼
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Fig. 6. The idealized satellite structure under analysis.

1According to Ref. [3], SRS is defined as the maximum absolute acceleration response of a series of damped, single-

d.o.f. oscillators to the application of the acceleration time history to their base, plotted over a specified frequency range

of oscillator natural frequencies and a constant quality factor Q ðQ ¼ 1=2zÞ; where z is viscous damping ratio.
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70:35 MPa; r ¼ 34:15 kg=m3 for composite faces and core respectively. Both faces have a
thickness of 1 mm and are made by two equal layers, moreover the orientation of the various
laminae is ð0
=90
=core=90
=0
Þ: Finally, two core thicknesses are considered: 8 and 18 mm and,
according to Ref. [26], an overall structural damping Z ¼ 1:2% has been selected, constant with
respect to frequency. As a result, damping of the honeycomb structure has been considered by
multiplying the dynamic stiffness matrix, ½Kd �; by ð1þ jZÞ:
Dispersion relations for the structures with thin and thick core are shown in Figs. 7 and 8

respectively. Both figures permit a comparison between the predictions using FSDT and CLT,
denoted by continuous and dash-dot line respectively, for bending and axial waves. It appears that
CLT predicts with sufficient accuracy the propagation of bending waves up to about 2 and 1 kHz
for the structures with thin and thick core respectively. Since the propagation of bending waves is
of paramount importance for the analysis described in this section, and the excitation bandwidth
covers several kHz, it follows that in the following only results obtained by using FSDT, i.e., the
spectral element proposed in this article, are described.
It is assumed that separation nuts are acting at nodes 1 and 2 of the structure under analysis, so

that their effect is represented by two forces with a time history as shown in Fig. 9 and given by
the following relation:

f ðtÞ ¼
�0:4 sin2ð2p

T1
ðt � Dt1ÞÞ; tA½Dt1;Dt1 þ T1�;

sinð2p
T2
ðt � Dt1 � T1ÞÞ; tA½Dt1 þ T1;Dt1 þ T1 þ T2�;

(
ð22Þ

where T1 ¼ T2 ¼ 500 ms have been determined from Fig. 7 of Ref. [26] showing the measured time
histories of the separation nuts, and Dt1 ¼ 1500 ms: Finally, in order to obtain results of general
validity, the excitation force f ðtÞ has been normalized so that its maximum is equal to 1 N:
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Fig. 7. Dispersion relation for the sandwich beam with thin core (—, FSDT; — � —, CLT).
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Both structures, i.e., with thin and thick cores, are built by connecting several sandwich beams.
It follows that the analysis has been performed by evaluating the Fourier transform of dynamic
responses as the product between the fast Fourier transform of f ðtÞ and the spectral matrix of the
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Fig. 8. Dispersion relation for the sandwich beam with thick core (—, FSDT; — � —, CLT).
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Fig. 9. Time history of the exciting force.
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whole structure (the simulation was run by using 10 000 sample points in time and a frequency
resolution of 2 Hz).
Figs. 10 and 11 show the fast Fourier transform of the out-of-plane acceleration at node 4 for

thin and thick core respectively. Since the spectrum of the exciting force is almost flat at low
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Fig. 10. FT of the out-of-plane acceleration at node 4 (thin core).
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Fig. 11. FT of the out-of-plane acceleration at node 4 (thick core).
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frequencies, from these figures it is verified that the structure with thick core has natural
frequencies higher than that with thin core.
Subsequently, SRS are evaluated by applying the time history (calculated by using the inverse

fast Fourier transform) of dynamic responses at the base of a series of single-d.o.f. oscillators with
different natural frequency and constant quality factor Q ¼ 10; i.e., z ¼ 5%; according to Ref. [3].
Figs. 12 and 13 show, for thin and thick core, respectively, the SRS at nodes 2, 4, 7 and 10, i.e.,

at the excitation point and at locations where equipment should be placed. Both figures highlight
a great reduction in the SRS moving away from the excitation point, while differences between the
environments at nodes 4, 7 and 10 are of lower extent. Furthermore, it is shown that for both
structures acceleration levels at nodes 7 and 10 are similar, even if lower than corresponding levels
at node 4.
Table 5 summarizes SRS prevailing results, i.e., acceleration levels at both low ð100 HzÞ and

high frequency (maximum SRS after the constant velocity line) as well as the residual SRS
percentage, i.e., the ratio between the SRS at the considered location and at the source (node
no. 2). It shows that, as can be expected, the structure with the thicker core gives lower
acceleration levels and the interesting results that the residual SRS differ by no more than 5–6%
between the two structures, even though there is a big difference between the thickness of the two
cores.

5. Conclusions

In this article a spectral element matrix for anisotropic, laminated composite beams is
presented. It is based on the First order Shear Deformation Theory, so that it takes into account
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both the shear deformation as well as rotatory inertia, whose effects can be very important at high
frequencies. The spectral matrix is derived by considering the propagation of waves into the
structural media and solving the corresponding wave equation.
In order to validate the proposed spectral element, a number of comparisons with data from the

scientific literature are shown: it is demonstrated that it predicts accurately natural frequencies of
beams with different boundary conditions, as well as eigenfrequencies of beams on multiple spans.
Comparisons with results obtained by using the dynamic stiffness matrix (SDM) confirm that
SEM and SDM are equivalent, at least for beams, and that differences in the predictions are due
to numerical errors. Furthermore, a comparison demonstrates the accuracy of SEM in the
prediction of the dynamic response to high frequency transients.
Finally, the proposed spectral element has been employed to demonstrate that it can be very

useful to perform pyroshock analysis. An idealized satellite structure made by sandwich beams
has been analyzed, and the shock response spectrum evaluated at several locations.
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Table 5

SRS levels at several nodes of the frame structure under analysis

Thin core Thick core

Low freq. High freq. Low freq. High freq.

Node no. Accel. ðgÞ Residue (%) Accel. ðgÞ Residue (%) Accel. ðgÞ Residue (%) Accel. ðgÞ Residue (%)

2 0.81 100 7.09 100 0.72 100 6.40 100

4 0.32 40 2.98 42 0.32 44 2.80 44

7 0.20 25 2.20 31 0.19 26 1.66 26

10 0.26 32 1.95 27 0.19 26 1.66 26
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Fig. 13. SRS at nodes 2 (—3—), 4 (—�—), 7 (—*—) and 10 (—}—) (thick core).
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Future investigations can take advantage of the proposed spectral element in order to analyze
the effect of several parameters, e.g., geometrical discontinuities such as different overall
thicknesses of the beams, optimize connections, analyze and optimize the location of damping
layers.
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